Configuring AI Services
Overview
Atolio lets users ask natural-language questions against your organization’s knowledge using retrieval‑augmented generation (RAG). Atolio supports multiple LLM providers, starting with OpenAI and Azure OpenAI.
Supported providers
Prerequisites
- A healthy Atolio deployment
kubectl
access to the clusteratolioctl
downloaded from the latest releasejq
installed (for extracting values from Kubernetes secrets)
High‑level configuration workflow
1) Port‑forward the Feeder service
kubectl -n atolio-db port-forward service/feeder 8889
Leave this running in a separate terminal while you configure keys.
2) Generate a JWT token for KV operations
# Get the JWT Secret (used to sign the token)
export jwtSecret=$(kubectl -n atolio-svc get secret lumen-secrets -o json | jq -r .data.jwtSecretKey | base64 -d)
# Change this to reflect your Atolio deployment's domain name
export domainName="https://search.example.com"
export JWT_TOKEN=$(atolioctl connector create-jwt --raw \
--jwt-audience-sdk=${domainName} \
--jwt-issuer-sdk=${domainName} \
--jwt-secret-sdk=${jwtSecret} \
"atolio:*:*:*")
Confirm JWT_TOKEN
is set to a JWT value.
3) Configure the provider
Follow your provider guide to set the model slug and credentials in the KV store.
- OpenAI: set
/lumen/system/ask_model_slug
toopenai-gpt-4o
and store the OpenAI API key. - Azure OpenAI: set
/lumen/system/ask_model_slug
toazure-openai
and store the API key, endpoint, and deployment name.
4) Restart the Marvin service
kubectl -n atolio-svc delete pod -l app=marvin
Kubernetes will recreate the pod with the new configuration.
Troubleshooting
- Startup errors: re-check the stored keys and endpoint URLs.
- Rate limits (Azure): increase Tokens per Minute (TPM) on the deployment.
- Connection issues: ensure port‑forwarding is active during KV operations.